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Flow visualization glass-ceramic: preliminary 
experimental and modelling results 

J. PLAWSKY 
Department of Chemical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA 

A glass-ceramic material was developed to act as a f low visualization material. Preliminary 
experiments indicate that aperiodic, thermally induced, convective flows can be sustained at 
normal processing conditions. These flows and the stress and temperature gradients induced are 
most likely responsible for the anomalous behaviour seen in these materials and the difficulties 
encountered in their development and in their production on industrial and experimental scales. 
A simple model describing the dynamics of variable-viscosity fluids was developed and was 
shown to be in qualitative agreement with more sophisticated models as well as with experimental 
results. The model was shown to simulate the dependence of the critical Rayleigh number for the 
onset of convection on the viscous properties of the fluid at low AT, and also to simulate 
quenching behaviour when the temperature differences were high. 
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1. I n t r o d u c t i o n  
Glasses sensitive to ultraviolet light have been known 
for centuries. Examples of this "solarization" phenom- 
enon are common and can be found in the purple 
window-panes of many homes in the USA dating from 
the colonial period. Sensitivity to sunlight was gener- 
ally thought to be a nuisance phenomenon and over 
the centuries, much work has been devoted toward 
eliminating it. In the 1940s, the process was brought 
under control and commercial photosensitive glasses 
and photosensitive glass-ceramics were first de- 
veloped at Corning Inc. The unique properties of-these 
glasses include reversible fading and darkening upon 
exposure to ultraviolet light, full colour pattern repro- 
duction (similar to photographic film), and precise 
photochemical machining of intricate patterns (similar 
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to the patterning of single-crystal silicon). This com- 
bination of unique features has resulted in a wide 
variety of applications for these materials including: 
microlens arrays for auto-focus cameras, fluidic logic 
devices, integrated-circuit chip carriers, and polarizing 
and non-linear optical materials. 

The basic process by which most photosensitive 
glasses and photosensitive glass-ceramics operate fol- 
lows the much-simplified reaction scheme below [1]: 

Ag~- + Ce~ + hv Ag o + Ceg4+ 
300 nm 

(metallic silver formation) 

nAgg0 ~ heat450•C (AgpO), 

(metallic silver agglomeration) 

, [  
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(Ag~ + xR heat Cg  
500~ 

(crystal phase development) 

C~ heat C '~  
500 ~ 

(silver deposition on to crystals) 

Exposure to ultraviolet light induces cerium to eject 
an electron which results in silver ion reduction to the 
metal. A subsequent heat treatment causes agglomera- 
tion of silver metal atoms and these clusters catalyse 
the nucleation of a crystal phase. The heat treatment 
usually involves two temperatures: one to form the 
crystal nuclei and another to initiate their growth. 

The work presented here was motivated by prob- 
lems seen in the reliable development and manufac- 
ture of photosensitive glasses. These materials are 
notoriously difficult to produce and reproduce on 
a daily basis as their photosensitive properties change 
in a seemingly random manner. On an experimental 
scale, verification of the results of a single successful 
experiment may require hundreds of repeated trials. 
Success is somewhat better on a plant scale since 
process variables are under tighter control. Cata- 
strophic failures (total loss of sensitivity) still occur 
and without apparent cause. Even when a plant has 
a successful run or set of runs, the properties of the 
glass are found to change from run to run and may 
even vary as a function of time during a single run. To 
compensate for this uncertainty manufacturers widen 
specification ranges and reject an unacceptably high 
amount of potential product. 

The premise of this work is that a lack of knowledge 
and control over the convective flow and temperature 
fields present in the glass during processing is the 
cause of most of the difficulties seen in the develop- 
ment and production of these materials. The glasses 
must be melted at temperatures in excess of 1450 ~ to 
convert cerium, originally in a 4+  oxidation state, to 
its 3 + oxidation state (this state is favoured at high 
temperatures in glass). Without this conversion the 
glass would not be photosensitive in a useful sense. At 
the melt temperature, the glass viscosity may be as low 
as 100 poise and due to the large amount of alkali 
content, the electrical and hence the thermal conduct- 
ivity of the material may also be quite large. In a nor- 
mal experimental processing situation where the glass 
is poured into a mould or as a slab on a bench, the 
large differences in temperature between the surfaces 
will result in strong convective motion and high ther- 
mal and stress gradients. To insure photosensitivity, 
cerium must be held in its 3 + oxidation state as the 
glass cools. This requires precise control over the 
oxidation state of the glass. Since the activity coeffi- 
cients of the components vary strongly with temper- 
ature, control of the oxidation state is difficult and 
may be nearly impossible in the presence of thermally 
induced convection. Clearly studies of natural convec- 
tion in glass systems will be important if the processes 
used to produce these materials are to be brought 
under control. 

The remainder of this paper will discuss a new 
glass-ceramic material developed to act as a flow 
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visualization tool, and a highly simplified model is 
developed to assess the types of flow possible in glass 
systems. 

2. Development  of a f low  visualization 
glass-ceramic 

Flows in glasses are related to the general case of flow 
in a fluid with variable viscosity. Rayleigh-Benard 
convection in these types of fluid has been the subject 
of much experimental [2-8] and theoretical interest 
[9-33] for those working in fluid mechanics, and has 
spawned a whole field of geology concerned with 
numerical simulations of mantle convection [34-43]. 
Though similarities exist between the work just men- 
tioned and glass flows, some important differences 
remain. Experimental studies of Rayleigh-Benard 
convection in variable-viscosity fluids are conducted 
using fluids easily manipulated at room temperature: 
paraffin, corn syrup, glycerine, etc. I-2-8, 44-46]. 
These fluids may represent the viscosity-temperature 
behaviour of glasses to some degree, but other equally 
important physical properties such as density, thermal 
expansion coefficient and thermal conductivity are 
nowhere near representative. Therefore experiments 
based on these materials cannot be extrapolated to  
explaining glass flow dynamics. Theoretical investiga- 
tions into these flows, even mantle flows, are also not 
representative of glass processing conditions. The 
majority of theoretical treatments assume the Prandtl 
number to be infinite and so neglect heat conduction 
entirely. Molten photosensitive glasses have high ther- 
mal conductivities coupled with low viscosities, and so 
an infinite Prandtl number assumption is clearly not 
valid. Moreover, radiation is one of the dominant 
forms of heat transfer in glass processing and is of no 
consequence in the thermal convection of room-tem- 
perature fluids. Though glasses are transparent to 
most thermal radiation, the presence of radiative heat 
transfer results in severe non-linear temperature gradi- 
ents in the glass and contributes to non-uniformities in 
the flow field. Clearly, new experimental and theoret- 
ical models are needed to accurately investigate glass 
flows. 

Fig. 1 shows the free surface of a glass-ceramic 
developed for use as a flow visualization tool. The 
glass is a lithium-borosilicate composition based on 
a combination of well-known photosensitive sodium 
borosilicate compositions and popular lithium 
aluminosilicate, photosensitive, glass-ceramic com- 
positions. The glass contains the photosensitizing 
dopant materials Ag +, Au 3+ and Ce 3+ which act as 
nucleating agents for the crystallization of the 
glass ceramic. Upon being poured into a mould and 
allowed to cool, thermal convection begins and the 
cellular structure of the flow can be observed due to 
radiative heat loss. As the glass cools further it phase- 
separates and mass transfer occurs as the components 
of the glass (SiO2, B/O3, Li20, A1103, Sb/O3, Ag20, 
SnO2, Au and CeO2) are redistributed among the 
various phases (crystal, silica-rich and boron-rich). 
The boron-rich phase becomes the dispersed phase 
and produces the stream-lines shown in the figure. It 



Figure 1 Top surface view of a photosensitive glass slab showing 
interracial instability at the glass-air interface and lhe near-square- 
cell conveclive pattern~ 

cannot crystallize and so remains a glass. The oxida- 
tion state of the glass is such that the silver becomes 
reduced during the cooling process, giving the boron 
phase a dark brown colour and the opaque, silica-rich, 
glass-ceramic phase a yellow colour. The contrast 
between the phases provides for easy viewing of the 
stream-lines. 

The surface convective geometries that are possible 
in Rayleigh-Benard convection span a range from roll 
cells to hexagons, squares, triangles, spokes, etc. Using 
a corn syrup, White [8] has catalogued these flows 
and the Rayleigh number ranges over which they 
either first appear spontaneously, or can be induced to 
appear. In working with a glass, it is difficult to accur- 
ately control lower and upper surface temperatures 
and so a repetition of White's experiments would be 
nearly impossible. What can be controlled is the geo- 
metry of the flow situation and the initial temperature 
of the glass. Fig. 2 shows sarface convective geomet- 
ries from a series of preliminary experiments where 
mould geometry was controlled. The mould geomet- 
ries investigated are given in Table I. The glass- 
ceramic developed in this work was used and the initial 
glass temperature was set at 1500 ~ One can see that 
by varying the geometry, roll cell (Fig. 2a), square cell 
(Fig. 1), or spoke-shaped patterns (Fig. 2b) can be 
produced spontaneously. By holding the processing 
temperature and the glass composition constant, cor- 
responding to holding the initial Rayleigh number 
(based on mould depth) constant, the whole range of 
flow behaviour can be investigated simply by chang- 
ing the geometry or aspect ratio of the mould. In these 
simple experiments, the surface temperatures were not 

Figure 2 (a)Roll-cell convective patterns: internal and surface 
views. (b) Spoke-shaped surface convective patterns (prominent  at 
image corners). 

T A B L E  I Mould dimensions 

Figure Mould dimensions, L x W x  H 

(inches) (mm) 

1 6 x 4 x  0.75 152x 102x 19 
2a 12 x 2 x0.75 305 x 51 x 19 
2b 6 x 6 x0.75 152x 152x 19 
3a - c  6 x 4  x 0.75 152x 102x 19 

accurately monitored, but initial Rayleigh numbers 
were in a range from 10 4 to 10 5. 

Of more importance than the surface flows is the 
nature of the internal flows in these materials. The 
glass-ceramic has a very steep viscosity-temperature 
curve so the internal flow field is essentially frozen in 
place as the glass cools. The glass can then be sec- 
tioned to look at internal flows. Fig. 2a shows a pair of 
roll cells, the stable flow for this elongated geometry. 
While some fluid mixing is evident in the folding of 
stream-lines at the centre of the cells, there is little 
communication throughout the fluid and segregated 
components have no way of remixing. Changing the 
geometry slightly to that of Fig. 2b shows that the 
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flow field changes dramatically. Fig. 3a and b show 
sections of the same glass represented in Fig. 1, taken 
from the middle of the mould and from the end, 
respectively. In the section from the centre of the 
mould one can see the steady convective flow pattern 
which occurs in the form of two cells. The mould is 
twice as wide as that used for the glass of Fig. 2a and 
the horizontal wavelength of the cells is also twice as 
large. The vertical wavelengths of the cells span the 
mould depth and are identical in both glass samples. 
The interaction of the two cells in Fig, 3a induces 
some vortex shedding, so one could expect marginally 
better mixing behaviour for this geometry. Toward the 
edges of the mould where the temperature gradient is 
highest and conduction is more important, the flow 
becomes very complicated and involves the interac- 
tion and destruction of many cells. The flow here is 
reminiscent of flows observed in chaotic mixing of 
viscous fluids [31] and shows a regime where efficient 
fluid mixing can occur and where any segregation 
which may exist in the glass due to insufficient mixing 
in the melt can be eliminated. These complex flows 
also have large temperature and stress gradients, mak- 
ing control of the oxidation state difficult. Similar and 
perhaps more complicated patterns can be seen in 
Fig. 3c. These flow patterns suggest that aperiodic and 
possibly chaotic flows can be sustained in these types 
of glass during typical processing conditions, If so, 
these flows would be responsible for the difficulties 
encountered in processing these materials on an ex- 
perimental and industrial scale. In pursuit of this idea, 
a simple flow model was developed to investigate the 
range of flows which might be encountered in these 
glasses. 

3. Model development 
The simplest model capable of describing some of the 
dynamics of the glass system considers only a single 
two-dimensional cell with free boundaries, and is de- 
veloped following a simplification procedure first out- 
lined by Saltzman E29] and Lorenz [23]. Many papers 
have been devoted to the study of the equations they 
developed for a constant-viscosity fluid and the valid- 
ity of those equations as a flow model [16]. Lorenz 
showed that a truncated model of this type conserves 
the mean kinetic energy and the mean square vorticity 
of the flow [24]. The model developed here for vari- 
able-viscosity fluids also conserves the mean kinetic 
energy and mean square of the vorticity but cannot 
conserve the entire statistical distribution of the vor- 
ticity, and so will not be able to reproduce experi- 
mental results in detail. Still, a model of this type is 
useful for anticipating the range of dynamic condi- 
tions which may appear in the flows, for elucidating 
the most important features of the flow and for relat- 
ing those features to the physical system in a way 
which is easily interpreted and used as a guide by 
process engineers. 

The Boussinesq approximation is assumed to be 
valid over the temperature range of interest 
(AT ~< 200~ and for sodium silicate glasses similar 
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Figure 3 (a) Mid-section slice from Fig. 1 showing the roll-cell pat- 
tern. (b) End-section slice from Fig. ! showing complex geometrical 
patterns. (c) End section showing complex cellular flow patterns 
and the effects of increased conductive heat transfer. 

to the composition used here, this appears to be the 
case [47]. Since the density in the continuity equation 
is assumed to be nearly constant, the pressure terms in 
the momentum equation can be removed by forming 
the stream function, ~, in a manner similar to 
Torrence and Turcotte [33]. 

The temperature field is defined by splitting it into 
the sum of the average temperature at the base of the 
system, To, a linear function representing the overall 
temperature gradient due to conduction from the base 
to the top of the system, A T z / H ,  and a non-linear term 
describing the deviations in both the horizontal and 
vertical directions, 0: 

AT 
T ( x , z , t )  = To - - - z  + O ( x , z , t )  (1) 

H 

The energy equation becomes a function of the non- 
linear component of the temperature 0, and the stream 
function, ~. 

The viscosity ta of the glass is a very strong function 
of temperature which has been found to obey the 
following empirical relationship: 

1)1 
where Tr is a reference temperature for the glass. This 
form for the viscosity function proved very difficult to 
manipulate during the construction of this model and 
did not lend itself to further simplification. Therefore, 
a five-term polynomial of the form 

ta = tao + t a t ( T -  To) + / a2 (T-  To) 2 + l a3 (T-  To) 3 

+ t a4 (T-  To) 4 + /as(T-- To) 5 (3) 

was used instead. The best definition for the poly- 
nomial viscosity function was obtained when the 



coefficients of Equation 3 were determined by match- 
ing the respective ffmctions (Equations 2 and 3) and 
their first five derivatives evaluated at the mean tem- 
perature of the calculation, Tm. 

The stream function, energy, and viscosity equa- 
tions were made dimensionless by the following trans- 
formations: 

x z 
Y - H w H S - k (4a) 

r~2(1 + aZ)Kt g ~ t H  3 V 

z H2 (~ -- KVm Vm 

(4b) 

V m = V 0 - -  v l ( A T W m )  + v 2 ( m T w m )  2 

- -  V3(ATWm) 3 + v4(ATWm) 4 - -  v5 (ATWm) 5 

(4c) 

where Vm represents the mean kinematic viscosity of 
the fluid. Substituting the new variables into the 
stream function, energy, and viscosity equations yields 
the following: 

Stream function 

~2(1 + a 2 ) ~ ( 8 2 S  ~ 2 8 ' ~  8S  

8 7  + ~w 2 ] 8w 

x - ~y~ + 8w2Oy ] + 8y\~w3 + ~w~Y2/ 

Pr~y /84S 84S ~4S ) 
- - P r v ~ y 4  +~w4 + 2 - -  ~y2ew2 

- 2PrOw w \~w 3 + ~ y 2 ]  

~v/83S .~3S 

- 4 e r ~ - ~ ~ )  + e r ~ w z \ 8 ~  8w2] 

~2V//02S 3 2 8 )  

Energy 

8S 82S 82S 
- R a  - 0 8y 8y 2 8W 2 

Kinematic viscosity 

1[ ( A T ' ] ( ,  
V -- V o + V 1 - -  RaW ) 

Vm \ ~ . /  

(At)2 
+ V 2 \ R a  j ( 0  - -  Raw)  2 

( q3 
+ V 3 \ R a  ] (0  - -  RaW) a 

+ V,\R~ ] (do -- R~w)4 

(AT)  s Raw) 5 ] 
+ VS\R~-) {r - 

The Prandtl number, Pr, and the Rayleigh number, 
Ra, are evaluated at the mean temperature of the fluid: 

Vm Pr = - -  
K 

(8) 
gl3tATH 3 

R a - 
VmK 

The simplest form of the model considers only the 
first harmonic of the stream function in the horizontal 
and vertical directions, the first harmonic of the tem- 
perature field in the horizontal direction and the first 
and second harmonics of the temperature field in the 
vertical direction. 

S = - Fsin(Tzay) sin(~w) (9) 
K 

0 = D cos(Tzay) sin(~w) - ~E sin(2rtw) 

where 
(m) 

1<(1 + a 2) 

a 
(1l) 

A T  ~3(1 + a 2 ) 3 A T  

~ r  a 2 R a 

and a represents the aspect ratio for the cellular 
motion in the horizontal and vertical directions. The 
coefficients F, D and E are time-dependent quantities 
only. The above representations are substituted into 
the stream, energy and viscosity functions. These 
equations are reduced, where possible, into contribu- 
tions from sin(rcay)sin(rcw), cos(~ay)sin(~w), and 
sin(2rcw). Like terms are grouped together to generate 
the following three equations describing the dynamic 
behaviour of the coefficients F, D and E. 

~F D --  - -  71:2(1 + a2)2 
~ . ( ~ r )  Pr(1 2(a2-1)AT2kl )F  

( 4a2(3 - a2) 12(a2 -1)AT2k2 ) 
(5) - Prk~ 1 (1 + a;) 2 ~5~ + ~ FD2 

(~ 8 3(a2- l )AT2k2)  
-- Prkl  -~- (1 -{- a2) ~ 7 ( i  ~ - ~  FE2 

8(7a  2 -  1) - ~ 4  
(6) - Prk2(1 ~ + ~)~ )r l )  

( 1 2(a2 ) - 3 )  
- Prk2 1--6- (1+a2)  ~ FE4 

4a2(a 2 + 17)\ 2 2 
Vrk2 1 + tl + a V  )FD E 

+ 2PrklAT(x~+a2)  ) + a2)2 FE 

+ Prk2AT x ( l + a 2 )  2 FE3 

(13a z -  1) 
+ 12PFkeAT(~lTt_a2)~)FD2E (12) 

~D 
(7) - FE -- O + [~rF (13) 
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~E 4 
~--~ -= FD --1  + a 2E (14) 

The constants kl and k2 are proportional to the deriv- 
atives of the viscosity with respect to the temperature 
and are given by 

1 
k 1 - I v  2 - - 3 v 3 ( z ~ T w m )  4- 6v4(z~Twm) 2 

Vm 

-- 10V5 (ATWm) 3 ] 

~2v 

OC ~ Tm 

1 
k 2 = - - I v  4 - 5 v s ( A T w m )  ] 

Vm 

(15) 

~4v (16) 
OC ~ Tm 

Since both r and S are even functions of w, no matter 
how severe the truncation in the series solution [16], 
the presence of the second-order and fourth-order 
derivatives in the representation of the viscosity is 
a fundamental feature of the solution. 

F is a measure of the strength of the flow in the cell. 
The flow is clockwise if F is positive and counterclock- 
wise when F is negative. D represents a measure of the 
horizontal temperature gradient. It follows F such 
that when F is positive, D is positive, indicating hot 
fluid rising from the left-hand side of the cell and cold 
fluid descending on the right-hand side. When F and 
D are negative, cold fluid is descending on the left- 
hand side. Large values of D represent large temper- 
ature gradients near the edges of the cell or thin 
boundary layers and relatively uniform temperatures 
in the centre of the cell. E is a measure of the temper- 
ature gradient in the vertical direction. Large values of 
E indicate that the boundary layers at the upper and 
lower surfaces are thin and that the temperature is 
fairly uniform in the centre. Equations 12-14 reduce 
to the familiar Lorenz equations when the assumption 
of constant viscosity is applied. In general, for fluids 
whose viscosity decreases with increasing temper- 
ature, the terms in Equation 12 with odd powers of 
E represent forcing functions (same sign as F )  whereas 
the terms with even powers of E represent damping 
functions (opposite in sign to F). 

In the next two sections preliminary results from 
this model will be discussed. They are presented to 
show that the highly simplified model displays realis- 
tic behaviour at both large and small values of the 
temperature difference, AT. A linear stability analysis 
is used to check predictions at small ATand numerical 
calculations to check one possible large ATprediction. 

3.1. Onset of convection 
One of the most important predictions of the models 
used to describe the fluid flow with temperature- 
dependent viscosity is that the critical Rayleigh num- 
ber for the onset of convection should increase as the 
viscosity range spanned by the fluid increases. Once 
the viscosity range grows to nearly a thousand:fold, 
the critical Rayleigh number levels off and begins to 
decrease (Fig. 4). This prediction and its experimental 
confirmation were the subject of much controversy in 
the 1970s when various conflicting predictions con- 
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Figure 4 A plot of the critical Rayleigh number, Re, versus 
B = ln(Vmax/Vmin) [8]: ( 0 )  experimental viscosity fluid, (11) golden 
syrup, (A) golden syrup-variable k. 

cerning the behaviour of the critical Rayleigh number 
were made. Each conflicting prediction was then con- 
firmed experimentally [2, 4, 7]. Recently, reliable data 
[8] have shown that the trend mentioned above is 
correct. 

The stability of a solution F = D = E = 0, repres- 
enting the case of no convection to a small disturb- 
ance, is initially governed by the characteristic 
equation ( 4) 

X + ~ {X 2 + [ P r ( 1 -  cro) + 1IX 

+ Pr(1-CYo-r)}  = 0 (17) 

The solution has three real roots when r, the ratio 
between the Rayleigh number for the fluid to the 
critical Rayleigh number for the onset of convection in 
a constant-viscosity fluid, is greater than zero. Of these 
three solutions, all are negative when r < 1 - ~o indic- 
ating that a purely conductive solution is stable. When 
r > 1 - Cro there is one real positive root so the con- 
ductive solution is unstable. The onset of convection 
must occur when 

2(a  2 - -  1)AT2kl 
r e = 1 - -  (Yo = 1 - -  /1:2(l + a2)2 (18) 

For a constant-viscosity fluid (k~ = 0), the critical 
Rayleigh number ratio for the onset of convection, re, 
is equal to unity and this agrees with Rayleigh's ori- 
ginal analysis. The present model predicts a variation 
in critical Rayleigh number ratio as a function of the 
fluid properties, the cell geometry, and of the temper- 
ature difference between the bounding planes. The 
term C~o arises from the ~v/~w and ~2V/~W2 terms in 
the stream-function Equation 5. 

The critical Rayleigh number ratio is highly de- 
pendent upon the temperature difference between the 
upper and lower surfaces. There is an explicit quad- 
ratic dependence on AT in the % term and ka is also 
dependent on the temperature difference and on 
the definition of the mean temperature. The origin of 
the temperature dependence is clear. The term 2ka is 
the second derivative of the viscosity with respect to 



the temperature.  The term 2AT2k~ represents the vis- 
cosity range spanned by the fluid between the upper  
and lower boundaries.  Previous models for temper- 
a ture-dependent  viscous fluids have presented figures 
showing the dependence of  the critical Rayleigh num- 
ber on the ratio of  the viscosities at the two temper- 
ature extremes [8, 11]. F r o m  this model, we see that to 
a first approximat ion  it is not  just the viscosity range 
which is impor tant  or the fact that  the viscosity 
changes with temperature,  but  it is the curvature of the 
viscosi ty- temperature  relationship which is primarily 
responsible for the observed effects. 

Glasses and most  other  fluids display an exponen- 
tial viscosi ty- temperature  behaviour  where the viscos- 
ity decreases with increasing temperature.  In such 
fluids, the curvature  of the viscosi ty- temperature  rela- 

t ionship is positive. Therefore, for aspect ratios less 
than unity, corresponding to most  experimental con- 
ditions, this simple model  predicts that  the critical 
Rayleigh number  should increase with increasing tem- 
perat_ure difference between the hot  and cold surfaces. 
A graph of  the critical Rayleigh number  ratio, rr as 
a function of the log of the maximum viscosity ratio, 
ln(Vmax/Vmi,), for a glass is shown in Fig. 5. The phys- 
ical parameters  used in the calculation are given in 
Table II  and were chosen to represent the photo-  
sensitive glass of Figs 1-3 as closely as possible. Four  
curves are given representing two different definitions 
of the mean temperature and two aspect ratios. The 
two curves at the upper and lower extremes of the 
figure were based on a mean temperature defined by 
weighting the linear temperature profile by the viscosity 
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Figure 5 Critical Rayleigh number ratio, r~ = R . / R c ,  at the onset of steady convection. Fluid properties are evaluated at the mean 
temperature defined by Equations 19 and 20. ( ) a 2 = 0.5, Tm weighted by l/p; ( ' " )  a 2 = 2.0, T m weighted by I/g; ( - - - )  a 2 = 0.5, Tm 
weighted by g; (-.-) a 2 = 2.0, Tm weighted by ~t. 

TABLE II Physical properties of photosensitive glass 

Viscosity, p. (kg m- t s - 1 ) 
Density, 9 (kg m-3) 
Thermal expansion coefficient, !3 (K 1) 
Thermal conductivity, k (Win 1 K-t) 
Heat capacity, Cp (kJkg 1 K-t) 

Box height, H (m) 
Aspect ratio, a z 

Temperature range, AT (~ 

(1.5 • 10S)exp {40[(900/T) - 1]} 
2360 
3.7 • 10 -3 
24.24 
1000 

0.0369 
0.252.0 
0-200 
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of the fluid at that temperature: 

f r  ~ rexp{7[ (Tr / r )  - 1]} dT 
H 

T m h  = "To ( 1 9 )  

J exp{v[(Tr/T) - 1]} dT 
TN 

This definition for the mean temperature emphasizes 
the upper, highly viscous region of the flow. With this 

definition, the model predicts an exponential increase 
in the critical Rayleigh number with increasing A T. In 
that sense the trend is in agreement with the calcu- 
lations and experimental observations of Stengel et al. 

[30] and White [8], who observed what looks like 
a nearly exponential growth of rc with increasing vis- 
cosity ratio (Fig. 4 for ln(Vmax/Vmin) ~< 3). An alternat- 
ive definition for the mean temperature emphasizes 
the lower-viscosity sub-layer by weighting the temper- 
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2 {} - 

- 2 0  

- 4 0  - 

0 

(a) 

/ J  

I I I I I 
2 4 6 8 10  
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% 

100  

5 0  
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5 0  

- 1 0 0  

I I r I 
- 1 5  - 1 0  -5  0 

(b) F 

l I I 
5 10  15 

Figure 6 P h a s e - p l a n e  d i a g r a m s  for  the  test  glass.  F lu id  p r o p e r t i e s  e v a l u a t e d  a t  t he  m e a n  "~ernperature  d e f i n e d  b y  E q u a t i o n  20. (a) r = 12.52, 

P r  = 10.52, A T =  5 ~  a 2 = 0.50; (b) r = 23.88, Pr = 11.03, A T =  10~  a 2 = 0.50; {e) r = 124.80, Pr = 19.00, A T =  9 0 ~  a z = 0.50; 

(d) r =  141.20, P r = 2 0 . 5 3 ,  A T =  l l 0 ~  a z=0.50;  (e) r =  157.42, P r - 2 1 . 7 6 ,  A T =  1 3 0 ~  a 2 = 0 . 5 0 ;  (f) r =  174.06, Pr=22 .71 ,  
A T =  1 5 0 ~  a 2 = 0.50; (g) r = 178.57, P r  = 22.91, A T =  155.28 ~ a 2 = 0.50; (h) r = 182.64, Pr = 23.08, A T =  160 ~ a 2 = 0.50. 
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ature with the inverse of the viscosity according to 

r r~ T e x p { -  7 [ ( T r / T )  - -  1]}dT  
H = (20) 

Tml f r '~  - y [ ( T r / T )  - -  1]}dT  
H 

The two inner curves of Fig. 5 show that in this case 
there is an initial region of exponential growth of rc 
with AT which then levels off as ATincreases, becom- 

ing a region of quadratic growth once the viscosity 
ratio reaches about 10 or so. The decrease in rc growth 
rate with AT is in better agreement with the calcu- 
lations and experiments of Stengel e t  al .  and White up 
t o  ln(Vmax/Vmin) ~ 6 ,  but this truncated model cannot 
predict the subsequent levelling off and decrease of re 
at extreme viscosity ratios. At these points the single- 
cell solution assumed here may be intrinsically un- 
stable and higher-order harmonic terms are necessary 
to describe the solution. 
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3.2.  Numer ica l  s i m u l a t i o n s  
The primary purpose in developing this model was to 
determine if aperiodic motions were possible in glass 
flows, over what range of temperature and geometry 
these situations would persist, and what types of 
dynamic behaviour were possible. The information 
gleaned from the model, in combination with experi- 
ments may yield a better understanding of how to 
control processing conditions. 

The set of Equations 12-14 has nine steady-state 
solutions. Each of these solutions is a function of the 
cell geometry, the thermophysical properties of 
the fluid and the temperature difference between the 
upper and lower surfaces. The solutions are not only 
a function of the viscosity, but are a function of exactly 
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where on the viscosity-temperature curve one lies. 
A full analysis of the model equations and their dy- 
namic behaviour is under way, but the breadth of such 
an analysis is beyond the scope of this paper. 

The simulations shown here used the definition for 
the mean temperature shown in Equation 20 because 
the results for the critical Rayleigh number calculated 
using this definition exhibited better qualitative cor- 
respondence with experimental data than did those 
based on Equation 19. The starting point for the in- 
tegration of the differential equations was chosen 
arbitrarily as F = 0; D = 0.5; E = 0, and was the same 
for all runs. 

Fig. 6a-h show the results of the numerical simula- 
tion displayed as phase-plane diagrams. At low 
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Rayleigh numbers, steady convective solutions are 
stable. At a critical point, steady convection becomes 
unstable and aperiodic motions take over. Despite the 
fact that there are nine steady-state solutions, the 
simulation shows that only three are dominant with 
one being the unstable conductive solution at the 
origin. Aperiodic flow remains the preferred dynamic 
situation over a wide range of Rayleigh numbers. As 
the temperature difference between surfaces is in- 
creased (by lowering the temperature of the upper 
surface), the viscosity of the upper layers become great 
enough to affect flow in the lower layer. The aperiodic 
flow becomes damped and decays through a series of 

bifurcations to states which resemble limit-cycles of 
different periods (Fig. 6d h). Here, the non-linear 
terms in the flow Equation 12 become the dominant 
components of the solution and finally, force the over- 
all flow back into a steady convective pattern again. 
As the temperature difference, AT, is increased, the 
horizontal and vertical temperature gradients increase 
non-linearly making it very difficult to control the 
properties of the glass (Fig. 7a-f). Once steady flow is 
favoured, at the highest AT investigated, the steady- 
state temperature gradient is high, but never as high as 
the highest gradients observed when aperiodic flow is 
evident. 
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Figure 7 Continued 

stable state. The progression from totally aperiodic 
flow to aperiodic with strong periodicities super- 
imposed makes intuitive sense, since one would expect 
the flow to decay from a chaotic state to a steady 

flow state through some type of periodic regime. The 
simulation here shows only one possible dynamic se- 
quence. The full spectrum of solutions will be the 
subject of a future paper. 
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The results of the model simulations have implica- 
tions for glass processing in general and photo- 
sensitive glass processing in particular. In instances 
where a glass is not well mixed in the furnace or where 
cord is to be avoided in thick glass samples, one would 
want to control the surface temperatures during pro- 
cessing to ensure that the glass is held for a time in the 
region of aperiodic flow where excellent mixing would 
occur. The model results indicate that the aperiodic 
regime is fairly broad so that very tight temperature 
control is not required. In processing a photosensitive 
glass, one would want to remain at either of the two 
extremes presented in Fig. 6. Here, to aid in control- 
ling the oxidation state in the glass, one would want to 
ensure that the flow and temperature fields were well 
damped so that strong, aperiodic gradients would not 
o c c u r .  

4. Conclusions 
A glass ceramic material was developed to act as 
a flow visualization material. Preliminary experiments 
with this material indicate that aperiodic, thermally 
induced, convective flows can be sustained under nor- 
mal processing conditions. These flows and the stress 
and temperature gradients induced are most likely 
responsible for the anomalous behaviour seen in these 
materials, and for the difficulties encountered in their 
development and in their production on industrial 
and experimental scales. 

A simple model describing the dynamics of vari- 
able-viscosity fluids was developed and was shown to 
be in qualitative agreement with more sophisticated 
models as well as with experimental results. The model 
was shown to simulate the dependence of the critical 
Rayleigh number for the onset of convection on the 
viscous properties of the fluid at low AT and also 
simulate quenching behaviour when the temperature 
differences were high. The primary features of the 
model were the predictions of: 

(a) steady convective flow at low AT, 0 < AT 
~< 7.5 ~ 

(b) aperiodic flow at moderate AT, 7.5 ~<AT 
~< 90 ~ 

(c) strong periodicities superimposed on aperi- 
odic flow, 90 ~< AT ~< 155 ~ 

(d) steady flow at high AT, 160 ~ ~< AT 
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